Genomic instability and enhanced radiosensitivity in Hsp70.1- and Hsp70.3-deficient mice.

نویسندگان

  • Clayton R Hunt
  • David J Dix
  • Girdhar G Sharma
  • Raj K Pandita
  • Arun Gupta
  • Margo Funk
  • Tej K Pandita
چکیده

Heat shock proteins (HSPs) are highly conserved among all organisms from prokaryotes to eukaryotes. In mice, the HSP genes Hsp70.1 and Hsp70.3 are induced by both endogenous and exogenous stressors, such as heat and toxicants. In order to determine whether such proteins specifically influence genomic instability, mice deficient for Hsp70.1 and Hsp70.3 (Hsp70.1/3(-/-) mice) were generated by gene targeting. Mouse embryonic fibroblasts (MEFs) prepared from Hsp70.1/3(-/-) mice did not synthesize Hsp70.1 or Hsp70.3 after heat-induced stress. While the Hsp70.1/3(-/-) mutant mice were fertile, their cells displayed genomic instability that was enhanced by heat treatment. Cells from Hsp70.1/3(-/-) mice also display a higher frequency of chromosome end-to-end associations than do control Hsp70.1/3(+/+) cells. To determine whether observed genomic instability was related to defective chromosome repair, Hsp70.1/3(-/-) and Hsp70.1/3(+/+) fibroblasts were treated with ionizing radiation (IR) alone or heat and IR. Exposure to IR led to more residual chromosome aberrations, radioresistant DNA synthesis (a hallmark of genomic instability), increased cell killing, and enhanced IR-induced oncogenic transformation in Hsp70.1/3(-/-) cells. Heat treatment prior to IR exposure enhanced cell killing, S-phase-specific chromosome damage, and the frequency of transformants in Hsp70.1/3(-/-) cells in comparison to Hsp70.1/3(+/+) cells. Both in vivo and in vitro studies demonstrate for the first time that Hsp70.1 and Hsp70.3 have an essential role in maintaining genomic stability under stress conditions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Insights into regulation and function of the major stress-induced hsp70 molecular chaperone in vivo: analysis of mice with targeted gene disruption of the hsp70.1 or hsp70.3 gene.

The murine hsp70 gene family includes the evolutionarily conserved hsp70.1 and hsp70.3 genes, which are the major proteins induced by heat and other stress stimuli. hsp70.1 and hsp70.3 encode identical proteins which protect cells and facilitate their recovery from stress-induced damage. While the hsp70 gene family has been widely studied and the roles of the proteins it encodes as molecular ch...

متن کامل

Targeted disruption of hsp70.1 sensitizes to osmotic stress.

The 70 kDa heat shock protein (Hsp70) plays a critical role in cell survival and thermotolerance in response to various stress stimuli. Two nearly identical genes, hsp70.1 and hsp70.3, in response to environmental stress, rapidly induce Hsp70. However, it remains unclear whether these two genes are differentially regulated by various stresses. To address the physiological role of the hsp70.1 an...

متن کامل

HSP70.1 and -70.3 are required for late-phase protection induced by ischemic preconditioning of mouse hearts.

We investigated the role of inducible heat shock proteins 70.1 and 70.3 (HSP70.1 and HSP70.3, respectively) in myocardial ischemic preconditioning (IP) in mice. Wild-type (WT) mice and HSP70.1- and HSP70.3-null [HSP70.1/3(-/-)] mice were subjected to IP and examined 24 h later during the late phase of protection. IP significantly increased steady-state levels of HSP70.1 and HSP70.3 mRNA and exp...

متن کامل

Protective effect of heat shock proteins 70.1 and 70.3 on retinal photic injury after systemic hyperthermia.

PURPOSE This study aimed to determine the relationship between the heat shock protein 70 from hsps70.1 and 70.3 on retinal photic injury after systemic hyperthermia. METHODS Eight-week-old female C57BU6 mice were kept at a constant temperature of 41-42 degrees C for 25-30 minutes. After dark-adaptation for 8 hours, intense light of 11000 lux was maintained for 6 hours. Histology and immunohis...

متن کامل

Effects of hsp70.1 gene knockout on the mitochondrial apoptotic pathway after focal cerebral ischemia.

BACKGROUND AND PURPOSE Murine heat-shock protein 70 (HSP70) protein, which is produced from 2 genes, hsp70.1 and hsp70.3, is known to protect the brain against ischemic injury. However, little information is available on the antiapoptotic mechanism of HSP70.1 protein after cerebral ischemia. To evaluate the role of HSP70.1 protein in ischemia, we analyzed the mitochondrial apoptotic pathway usi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 24 2  شماره 

صفحات  -

تاریخ انتشار 2004